

Effect of pipe twisting on coiled tubing fatigue

Ken Newman Athena Engineering Services

ICoTA Calgary Round Table October 25, 2017

Introduction

- CT Fatigue Refresher
- Theory on Pipe Twist's Effect
- Fatigue Modeling with Pipe Rotation/Twist
- Tracking of Pipe Rotation / Twist
- Diameter Growth Modeling

Sources of CT Fatigue

CT Fatigue Dependencies

Bending Strain (Geometry)

$$\geq \epsilon = r/R$$

- Stress due to pressure
 - Von Misses Stress or Hoop Stress
- Tubing Material Properties
- Previous Fatigue Accumulation

Bending Stress / Strain relationship

Bending Stress / Strain relationship

Plastic Deformation Due to Bending

Standard CT Fatigue Testing

Fatigue Damage Accumulation Standard CT Fatigue Testing

Typical failure location

Rotational Orientation Measuring Device (ROMD)

Pipe Twist – Seam weld tracking

Fatigue Damage Accumulation with evenly distributed twist

Comparison of accumulations

Fatigue Damage Accumulation with 180 degree twist

Alternating Reversed Bends

CT Fatigue and Deformation

- Athena has developed a fatigue model that includes rotation and diameter growth
- In 1990's Radovan Rolovic developed a CT plasticity model called "CTdef"
- These models are being used in this work

Fatigue with Rotation Base Case

- 2" X .203" 90 Grade CT
- 5,000 psi internal pressure
- No axial force
- 72" guide arch
- 96" reel diameter
- 30 trips
- Rotation once per trip

No Rotation

Rotation 10 deg/trip

Rotation 20 deg/trip

Rotation 30 deg/trip

Rotation 180 deg/trip

Random Rotation

Random Rotation

CT Deformation Diameter Growth

- Diameter growth models have been developed based on diameters measured from fatigue test data
- These models are implemented in programs like Cerberus to predict diameter growth along the length of the CT string
- The predictions from these models tend to over predict the growth when compared to measured data in the field
- The purpose of this analysis is to determine why these models over predict the diameter growth

Variation in Internal Pressure

Varying Pressure

Varying Pressure

Affect of Rotation on Diameter

- The Athena model and the CTdef model were used to model the affect of rotation on diameter growth.
- Surprisingly, both models predicted that rotation would have a minimal impact on diameter growth

Rotation

Affects of Axial Force on Diameter Change

- There are two types of axial force which are applied to the CT.
 - ➤ Axial force in the well. This can be a large force, up to 80% of the yield force
 - ➤ Reel Back Tension (RBT) this is a fairly small force applied between the reel and the guide arch to keep the CT from springing off the reel

Large Weight Force Applied in the Well

Reel Back Tension

Summary for Diameter Growth

- As Radovan showed 20 years ago, the changing of internal pressure while bending has a significant impact on diameter growth
- Rotation of the CT has minimal impact on diameter growth
- Weight, while the CT is in the well, has some impact when the weights are high
- Reel back tension has no significant affect
- Radovan did some testing that proved the first point above
- Athena in in the process of doing some testing which will hopefully validate some of the other points.

Thank You

Questions?