Best Practice for Storage of Coiled Tubing

Kevin Elliott, Quality Tubing

ICoTA Roundtable Calgary, AB October 25, 2017

Quality Tubing | NOY Completion & Production Solutions

A retions

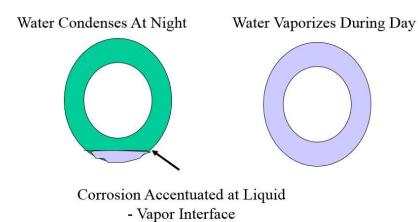
Agenda

- Background of CT Storage
 Industry Best Practices
 - API Requirements/Suggestions
- Experimental Tests
 - The Opportunity
 - Test Plan
 - Results
- Conclusions

Background/History

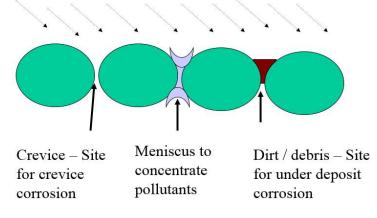
- CT Storage
 - Never a first choice but sometimes unavoidable
 - The primary issue is corrosion
- Industry Best Practices
 - Covered
 - No fluids in the ID
 - OD coating/inhibition
 - ID inhibition
 - No fluids on the ID
 - Inert gas atmosphere on the ID
 - Plug to resist diffusion of oxygen into the ID

Background/History – API Documents


- What do the API documents exist for this purpose?
 - API 5ST Specification for Coiled Tubing (new CT)
 - API RP 5C8 Care, Maintenance, and Inspection of Coiled Tubing (used CT)
- API 5ST Interpretation
 - Chapter 14: Coatings
 - 14.1: Requires an external protective film
 - 14.2.1: If no external film is applied, cover the CT
 - 14.2.2: Fill the ID with a dry nonreactive (inert) gas
- API RP 5C8 Interpretation
 - 6.3.2c: Inhibit, blow dry with inert gas, and seal for storage
 - 7.1.1: After use, purge with nitrogen and cap the ends
 - 7.1.2: Use anti-freeze on the ID for cold climates; use a coating on the ID for long-term storage

Background/History

- Manufacturer Best Practice
 - Add External Coating at Manufacturing
 - Leak Detect with Pressure (use controlled water)
 - Purge with Nitrogen and a wiper ball
 - Add Internal Inhibition (or anti-freeze for cold climates)
 - Cap Ends
 - Cover until shipment
- Used String Best Practice
 - After operations, purge with nitrogen and a wiper ball
 - Pump internal inhibition (and biocide if necessary)
 - Cap ends
 - Additional steps if storing for an extended period


Background/History – Literature Review

Water Film / Vapor in Coiled Tubing Wrap on Reel

External Corrosion Problem (Coiled Tubing Wraps on Reel)

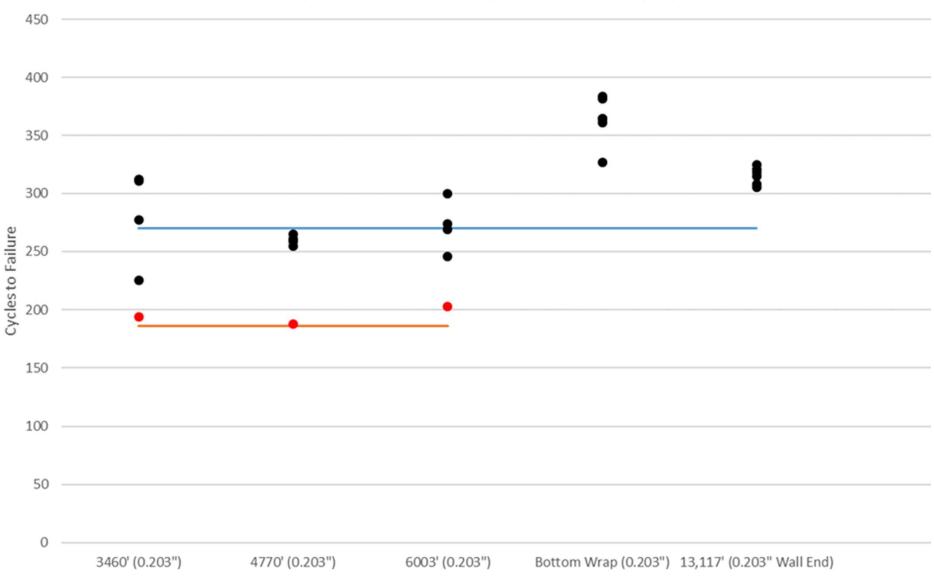
Rain and Industrial Pollution (acid rain)

Background/History – What Can Go Wrong?

Experimental Tests

- What happens when everything goes right?
- The Opportunity: Industry Downturn \rightarrow Stock strings
- Test Plan
 - Select strings at least 1 year old
 - Cut portions from the start, end and the middle (including bias welds)
 - Low Cycle Fatigue Test
 - Evaluate for corrosion pitting if necessary
 - Look at a variety of OD and grade combinations

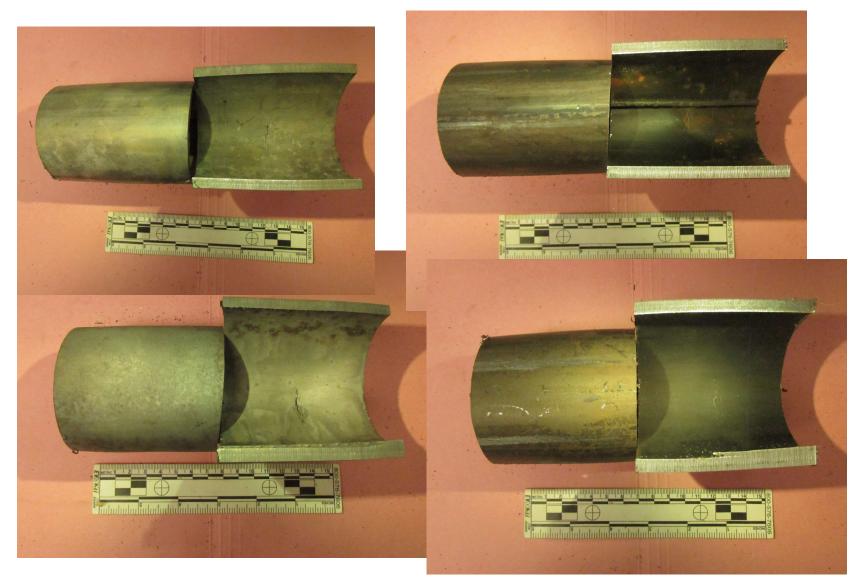
Experimental Tests


• Test Strings

SN	Grade	OD (in.)	Wall (in.)	Storage
44410-8000	QT-900	2.375	0.188 - 0.203	27 mo
44118-0000	QT-1300	2.625	0.156 - 0.203	23 mo
43396-8010	QT-1100	1.250	0.125 - 0.156	23 mo
44379-0000	QT-16Cr	2.375	0.175	23 mo
43824-8010	QT-1000	2.000	0.125 - 0.175	33 mo
44648-0000	QT-900	1.500	0.156 - 0.203	24 mo

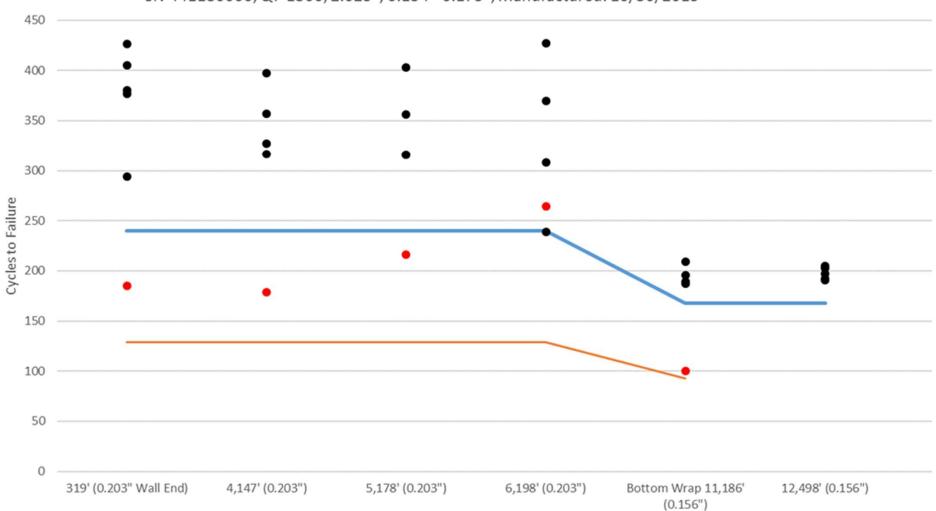
As-Received

SN 444108000, Manufactured: 06/25/2015



SN 444108000, QT-900, 2.375", 0.175"-0.203", Manufactured: 06/25/2015

Representative Views of SN 444108000


Post-Low Cycle Fatigue Testing

As-Received

SN 441180000, Manufactured: 10/30/2015

SN 441180000, QT-1300, 2.625", 0.134"-0.175", Manufactured: 10/30/2015

Conclusions

- Five Keys
 - OD: Coat
 - OD: Cover
 - ID: Purge with inert gas
 - ID: Inhibit (biocide as well by market)
 - ID: Cap

- Evaluation of strings stored this way is very positive
- More work to come, will be a paper/presentation at SPE/ICoTA in March

Quality Tubing

Completion & Production Solutions