#### **WORLDWIDE KNOWLEDGE - LOCAL SOLUTIONS®**





### Coiled Tubing Vibrational Analysis

Dan Regehr - ICoTA Roundtable - October 25 / 2017

## Perception

Severe vibration associated with water hammer tools cause premature wear / fatigue on surface equipment and coiled tubing.



### Water Hammer Tool – Vibration Video



#### How To Validate?

- 3-axis accelerometer to measure vibrations during milling
  - Mounted to injector at surface
  - Incorporate into bottom hole assembly
- Post job data analysis



#### What Did we Learn?

- On surface, vibrations from tool < vibrations from equipment
- No cause for concern no damage to injector nothing more than 1g







### Challenges

- Data processing 3200 Hz lots of noise to filter- MATLAB
- Initial accelerometer downhole data was truncated @ max 16 g
  - Extrapolate to approximate peaks
- Time scale can be offset coil DAQ vs. Excel manageable
- Temperature most accelerometers are limited to 80°C
- Tool Companies not everyone wants comparative vibrational analysis

### Summary

- Vibrations from the water hammer tools are much lower in magnitude than the vibrations from the equipment
- It is possible to see motor stalls / engagement with obstructions
- The vibration characteristics of the water hammer tools were not appreciably different at depth vs. at surface



### Next Steps?

- We have a new accelerometer incorporating into milling BHA
- Compare water hammer tools vibration characteristics
  - Coanda effect style vs. PDM variable valve
- Natural coil twist ~ x /100m with xxx coil
- Should be able to approximate motor torque
  - 1000 ft-lb ~ 2.8° / m with 2.375" Coil



# Acknowledgements

- ICoTA Canada
- Trican Well Service
- Dave Jupp
- Sam Robb
- Ryan Musteca

