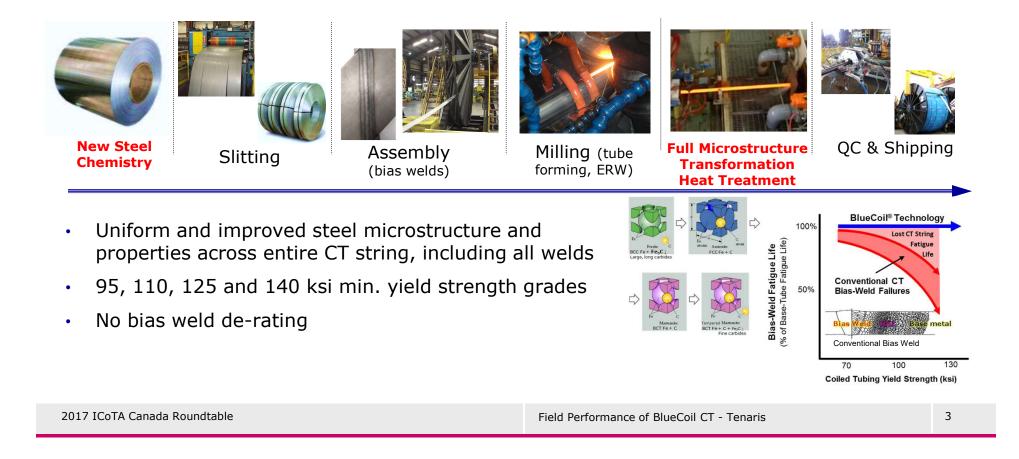
## Field Performance of BlueCoil Including Performance of Mechanically Damaged CT

Radovan Rolovic & Bruce Reichert Tenaris Coiled Tubes





ICoTA Roundtable, Calgary, Canada October 25, 2017

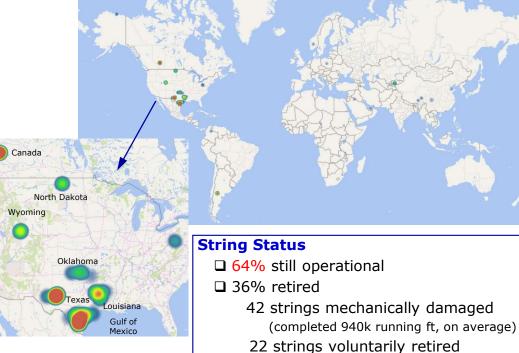



## Outline



- Brief technology background
- Overall field performance of new technology CT
- Field performance of mechanically damaged new technology CT
- Laboratory testing of mechanically damaged CT
- Conclusions

## New Technology & CT Manufacturing




# Commercial Usage of New Technology CT

### Over 240 CT Strings deployed since 2015

#### □ >5 million feet of CT shipped

- 1.75" 2.625" OD, 0.125" 0.250" WT
- >70% tapered-wall CT strings (all with gradual/continuous wall thickness change)
- HT-125, HT-110 & HT-95 grades
- 26,500 ft max string length (2.375" OD)
- □ 47 customers (33 in North America)
- >90 million total CT running feet in field operations (>4,000 jobs)
- $\Box$  6 strings with >1.5 million running feet
  - 17 strings > 1 million running feet
  - 49 strings > 800k running feet
- 92% maximum used fatigue life for a CT string (1,016k running feet)
- I.9 million maximum running feet with a CT string (at 89% used life)



Similar conventional CT strings have been used up to about 400k to 500k RF, on average, in same operations



Field Performance of BlueCoil CT - Tenaris

(after 1,100k running ft, 2017 average)

# **Commercial Usage of New Technology CT**

Most used HT CT strings (completed ~2-4 times more downhole work than conventional CT on similar jobs)

|    | Grade  | OD (WT)                                      | Length (ft) | Area                     | Jobs | Pressure       | Used Life | Running ft | Still Operational ?                |
|----|--------|----------------------------------------------|-------------|--------------------------|------|----------------|-----------|------------|------------------------------------|
| 1  | HT-125 | <b>2.375</b><br>(0.204-0.175)                | 25,368      | West Texas               | 69   | HP, some<br>LP | 89%       | 1.90 M     | No (mechanically damaged)          |
| 2  | HT-125 | <b>2.375</b><br>(0.204-0.175)                | 24,105      | South & West<br>Texas    | 64   | HP, some<br>LP | 77%       | 1.85 M     | No (mechanically<br>damaged)       |
| 3  | HT-125 | <b>2.375</b><br>(0.224-0.175)                | 21,000      | South Texas              | 72   | HP, some<br>LP | 92%       | 1.68 M     | No (voluntarily retired by client) |
| 4  | HT-125 | <b>2.375</b><br>(0.204-0.175)                | 25,933      | West Texas               | 55   | HP, some<br>LP | 61%       | 1.62 M     | Yes                                |
| 5  | HT-125 | <b>2.375</b><br>(0.204-0.175)                | 22,800      | Oklahoma                 | 77   | HP, MP,<br>LP  | 45%       | 1.61 M     | No (voluntarily retired by client) |
| 6  | HT-125 | <b>2.375</b><br>(0.204-0.156)                | 22,500      | West Texas               | 50   | HP, some<br>LP | 78%       | 1.55 M     | No (voluntarily retired by client) |
| 7  | HT-125 | 2.375<br>(0.224-0.250-0.156)                 | 23,300      | West Texas               | 76   | HP, some<br>LP | 48%       | 1.43 M     | No (mechanically damaged)          |
| 8  | HT-110 | <b>1.75</b><br>(0.156)                       | 12,680      | Canada                   | N/A  | LP-MP          | N/A       | 1.25 M     | No (mechanically damaged)          |
| 9  | HT-125 | <b>2.375</b><br>(0.204)                      | 22,410      | Louisiana, East<br>Texas | 37   | HP, some<br>LP | 46%       | 1.17 M     | No (mechanically damaged)          |
| 10 | HT-125 | <b>2.375</b><br>(0.204- <b>0.250-0.134</b> ) | 23,500      | North Dakota             | 57   | HP, some<br>LP | 49%       | 1.15 M     | No (voluntarily retired by client) |
| 11 | HT-125 | 2.625<br>(0.224-0.250-0.156)                 | 23,648      | South & West<br>Texas    | 58   | HP-LP          | 39%       | 1.13 M     | No (voluntarily retired by client) |

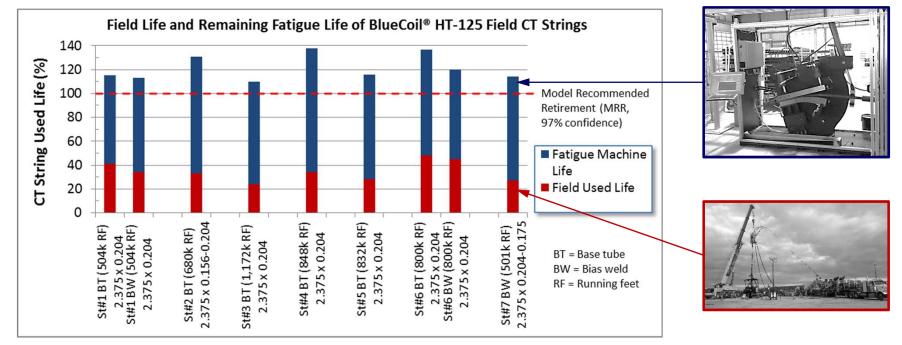
Similar conventional CT strings have been used up to about 425k RF, on average, in same operations

2017 ICoTA Canada Roundtable

# Commercial Usage of New Technology CT

Most used 2.625" CT strings

|    | Grade  | OD (WT)                             | Length (ft) | Area                  | Jobs | Pressure       | Used Life | Running ft | Still Operational ?                   |
|----|--------|-------------------------------------|-------------|-----------------------|------|----------------|-----------|------------|---------------------------------------|
| 1  | HT-125 | <b>2.625</b><br>(0.224-0.250-0.156) | 23,648      | South & West<br>Texas | 58   | HP-LP          | 39%       | 1,126 k    | No (voluntarily retired by client)    |
| 2  | HT-125 | <b>2.625</b><br>(0.224-0.156)       | 21,500      | South Texas           | 31   | HP-LP          | 51%       | 1,049 k    | Yes                                   |
| 3  | HT-125 | <b>2.625</b><br>(0.224-0.175)       | 22,947      | South Texas           | 45   | HP-LP          | 28%       | 988 k      | Yes                                   |
| 4  | HT-125 | <b>2.625</b><br>(0.224-0.156)       | 23,563      | South Texas           |      | HP-LP          | 43%       | 915 k      | Yes                                   |
| 5  | HT-125 | <b>2.625</b><br>(0.204)             | 23,019      | West Texas            | 39   | HP-LP          | 48%       | 899 k      | Yes                                   |
| 6  | HT-125 | <b>2.625</b><br>(0.224-0.156)       | 22,000      | West Texas            | 38   | HP, some<br>LP | 68%       | 894 k      | No<br>(Corrosion damage)              |
| 7  | HT-125 | <b>2.625</b><br>(0.250-0.156)       | 21,204      | West Texas            |      | HP-LP          | 43%       | 877 k      | No (mechanically damaged)             |
| 8  | HT-125 | <b>2.625</b><br>(0.204)             | 22,000      | South Texas           | 29   | HP-LP          | 53%       | 852 k      | No (Mechanically damaged)             |
| 9  | HT-125 | <b>2.625</b><br>(0.224-0.250-0.156) | 23,500      | West Texas            | 33   | HP, some<br>LP | 54%       | 811 k      | No (voluntarily retired<br>by client) |
| 10 | HT-125 | <b>2.625</b><br>(0.224-0.175)       | 24,058      | West Texas            | 30   | HP-LP          | 35%       | 758 k      | No (mechanically damaged)             |


Similar conventional 2.625" CT strings have been used up to about 300k-400k RF, on average, in same operations

2017 ICoTA Canada RoundtableField Performance of BlueCoil CT - Tenaris6

# Performance of New Technology CT

### Several CT strings have been tested after field use between 0.5M and 1.2M RF

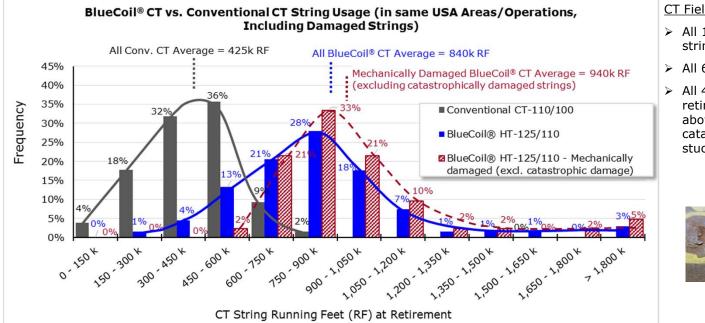




Similar conventional CT strings have been used up to about 400k to 500k RF, on average, in same operations

2017 ICoTA Canada Roundtable

### CT Damage – Main CT Retirement Cause




2017 ICoTA Canada Roundtable



### Field Usage & Performance Comparisons

Actual field usage of Conventional CT-110/100 and HT-125/110 CT strings in the same USA areas/operations, including damaged strings



#### CT Field Retirement Statistics for:

- All 100+ Conv. CT-110/100 strings retired since 2013
- > All 68 HT-125/110 retired strings
- All 42 mechanically damaged retired HT-125/110 strings (out of above 68 strings, excluding catastrophically damaged & stuck/cut strings)

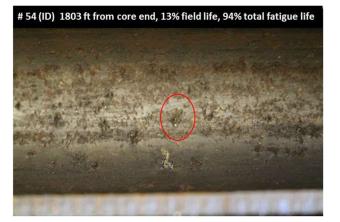


#### New technology CT strings, including damaged strings, on average completed 2 times more field work than conventional CT strings

2017 ICoTA Canada Roundtable

## **CT Life after Field Mechanical Damage**

- Field damaged CT section plough mark (no pinhole leak)
- HT-125, 2.375" x 0.190"
- Field used fatigue life was 25%
- Fatigue tested to failure at 7,100 psi on 48" bending radius
- Deep end of plough mark was on intrados in fatigue machine gage section at typical failure distance along the gage section
- Additional fatigue machine life was 45% (failed at the deep end of plough mark)
- Total life = 70%


Photo after sample failure in fatigue machine



2017 ICoTA Canada Roundtable

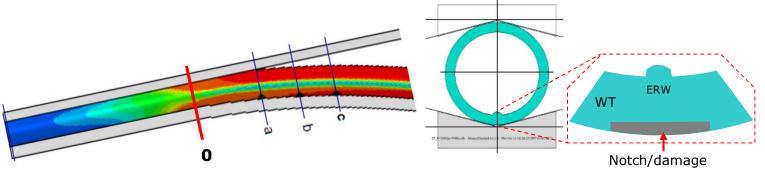
### **CT Life after Field Corrosion Damage**

- Field damaged CT section Internal corrosion pitting (no field failure)
- HT-125, 2.375" x 0.204", used on 26 South Texas jobs, 504k running feet
- Field used fatigue life was 13% at corrosion damage (41% for CT string)
- Fatigue tested to failure at 6,700 psi
- Additional fatigue machine life was 81% (failed at a corrosion pit)
- Total life = 94%



Pitting depth up to 15% of wall thickness (up to  $\sim 0.030''$ )

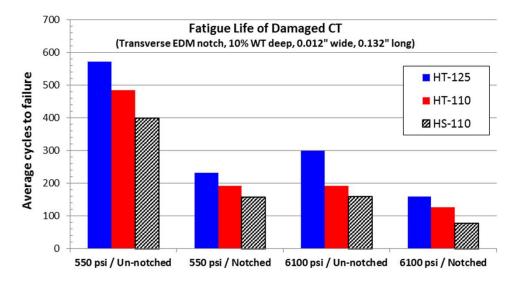



2017 ICoTA Canada Roundtable

### **Fatigue Performance - Damaged CT Testing**



#### Test conditions:


- □ 3 same transverse EDM notches on OD intrados along ERW at ~ 2.3" apart, starting at 4" into the gage section (this is where undamaged CT normally fails)
- □ New 2.0" x 0.204" CT
- □ 5%, 10%, an 15% WT notch depth, 0.012" wide (longitudinally), 7x transverse length to depth ratio, sharp corners
- □ HT-125, HT-110, HS-110
- □ 500 psi and 6100 psi fatigue tests
- □ 3 repeated fatigue tests for each grade and condition



| 2017 ICoTA Canada Roundtable | Field Performance of BlueCoil CT - Tenaris | 12 |
|------------------------------|--------------------------------------------|----|
|                              |                                            |    |

### Fatigue Performance - Damaged CT Testing

#### Test results for 10% deep transverse notches in HT-125, HT-110 and Conventional HS-110 base tube (averages of 3 tests)



| Undamaged CT                                            |              |              |  |  |  |  |
|---------------------------------------------------------|--------------|--------------|--|--|--|--|
| Fatigue Life Ratio,                                     | undamaged CT |              |  |  |  |  |
| Grade/Grade                                             | Low Pressure | Mid Pressure |  |  |  |  |
| HT-110/HS-110                                           | 121%         | 120%         |  |  |  |  |
| HT-125/HS-110                                           | 143%         | 187%         |  |  |  |  |
| Damaged CT                                              |              |              |  |  |  |  |
| Remaining Life Ratio, sharp transverse cut, 10% WT deep |              |              |  |  |  |  |
| Grade/Grade                                             | Low Pressure | Mid Pressure |  |  |  |  |
| HT-110/HS-110                                           | 123%         | 163%         |  |  |  |  |

HT CT advantage increased after CT damage

148%

#### Much more HT CT residual life after CT damage, with even bigger advantage at bias weld

Removing/grinding out these notches (up to ~15% deep) to a smooth surface restores the fatigue life close to 100%

2017 ICoTA Canada Roundtable

Field Performance of BlueCoil CT - Tenaris

HT-125/HS-110

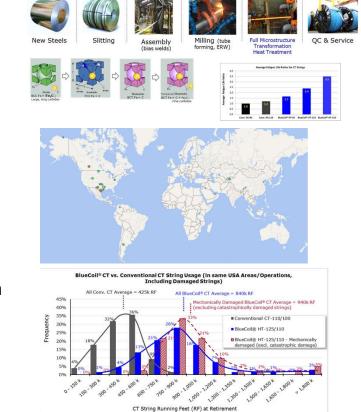
204%

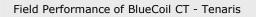
## Summary of New Technology CT Performance

#### □ Proven field performance

- > 240 field strings (1.75" 2.625" OD, majority 2.375")
- > 2 years in field operations
- > 4000 CT jobs, majority high pressure
- > 90 million running feet

#### □ Much longer field life vs. conventional CT


• 2 to 4 times more downhole work with a CT string


#### □ Much longer CT string life even when damaged

 Twice longer field use after CT string gets damaged, on average

#### $\hfill\square$ Lower operational risk and cost

2017 ICoTA Canada Roundtable







### Thank you for your attention.

# Questions?



2017 ICoTA Canada Roundtable