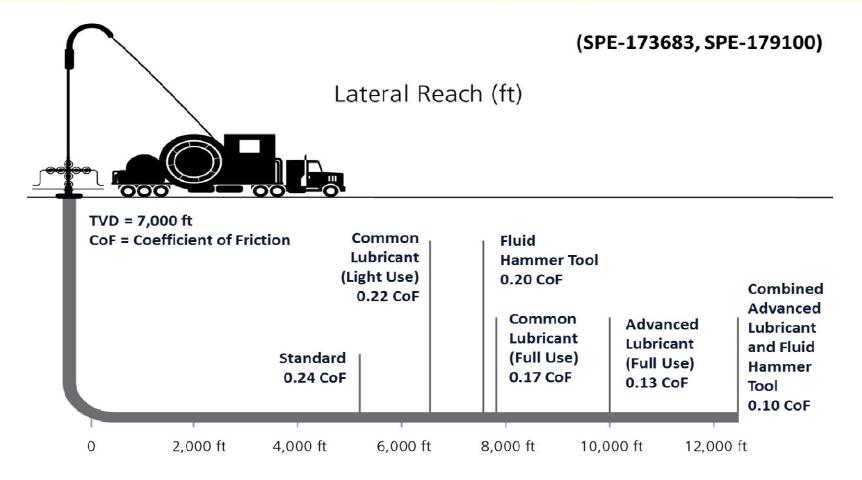
Recent Advancements with a Unified Coiled Tubing Extended-Reach Technology

Silviu Livescu, Baker Hughes Coiled Tubing Research and Engineering (CTRE)

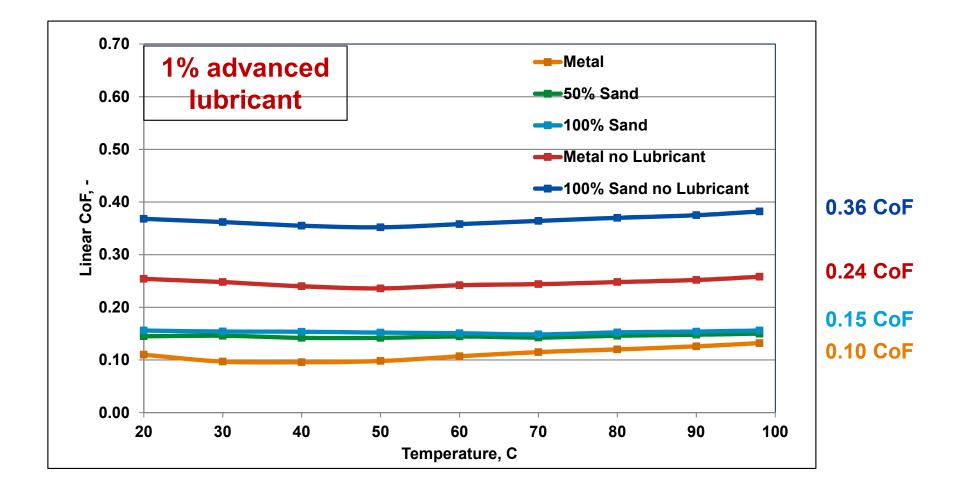
October 19, 2016 ICoTA Roundtable, Calgary, Canada



What Problem is Solved?

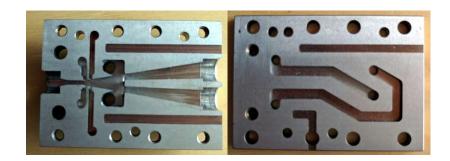
- Lubricants and fluid hammer tools
- Reduce CT mechanical friction
- Assist in freeing stuck CT or to run in hole past lockup
- Provide greater weight on bit or overpull
- Significant recent theoretical, laboratory, field advancements (SPE-168298, SPE-179100)
- No reliable data if sand/proppant/debris present in well

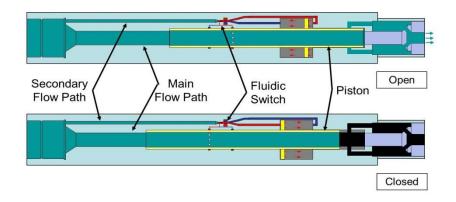
Recent CT Extended-Reach Advancements

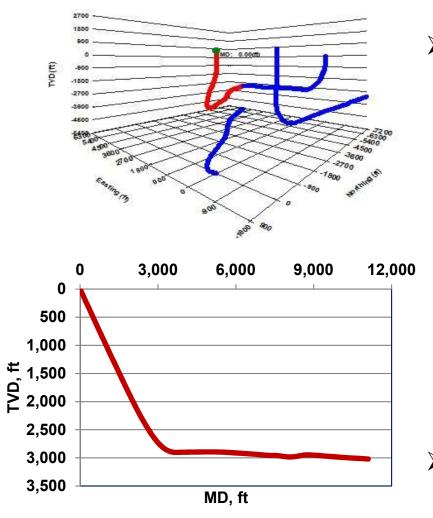

Note: Sample analysis 2" CT in 5½" horizontal well. Ability to transfer 500 lbf available weight on bit for each condition listed above.

Rotational and Linear Friction Tests vs. Field Data

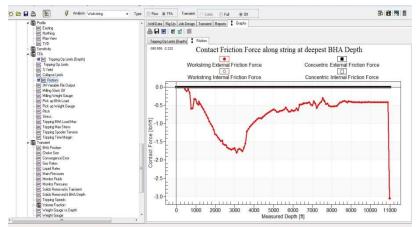
Lubricant	Rotational CoF at 20°C	Linear CoF at 98°C	Field CoF
None	0.34	0.28	0.24 - 0.28
2% Lubricant 1	0.04	0.20	0.19 Mostly (0.17 Rarely) - 0.24
2% Lubricant 2	0.05	0.18	0.19 Mostly (0.17 Rarely) - 0.24
2% Advanced	0.08	0.12	0.13 - 0.14
Lubricant			


- 8 base fluids: tap water, fresh water, 2% KCl, seawater, produced water, 8% HCl, Diesel, mineral oil
- > 20 lubricants (third-party and proprietary)
- 4 hydraulic friction reducers
- Well tubular metallurgy: P110 and Cr13 (multiple roughness values)
- Coiled tubing: 90, 100ksi conventional and Cr13
- > SPE-168298, SPE-170635
- 4 | 2016 ICoTA Roundtable Recent Advancements with a Unified CT Extended-Reach Technology Silviu Livescu

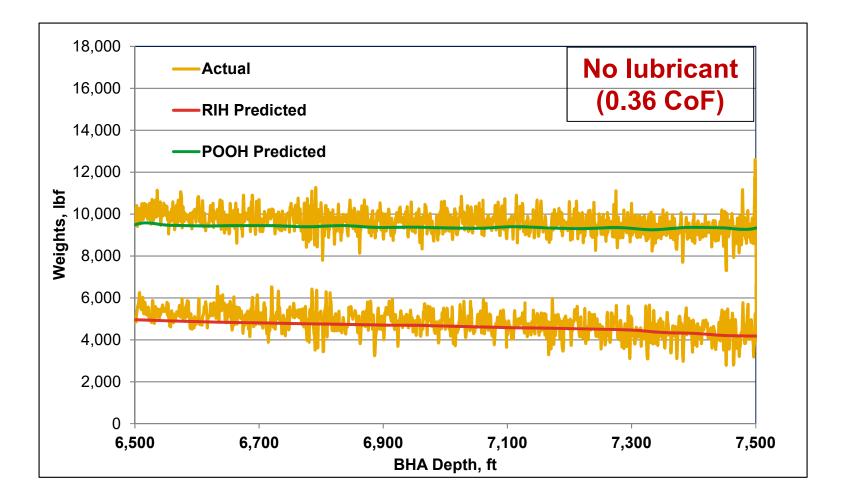

Laboratory Testing – Advanced Lubricant on Sand Surfaces


Fluid Hammer Tool

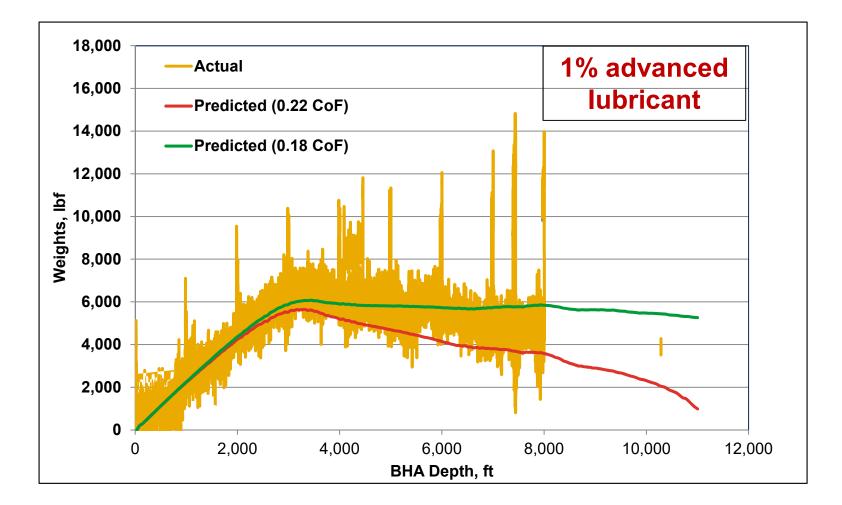
- Uses a fluidic switch based on Coandă effect (SPE-168297, SPE-179100)
- Recent mathematical model calculates apparent CoF and axial pulling force in pre-planning stage
- Field CoF reduced by 10-20% depending on job parameters (well trajectory, pumping rate, downhole pressure, CT size, etc.)
- Wellbore sand/proppant does not affect tool performance


Case History – Well Details

- 'J shaped' sand-screen-completed injector well in the North Sea with scale buildup
 - 11,030 ft MD
 - o 7,454 ft lateral
 - \circ 5 ¹/₂-in. tubing from surface to 6,340 ft
 - o 6 ⁵/₈-in. sand screen from 6,340 ft to MD
 - 1,245 psi and 96°F (36°C)
- No previous intervention in this well


Case History – Operation Details

- 2-in. CT, 2 1/8-in. rotary jetting tool, 2 7/8-in. fluid hammer tool, and advanced lubricant
- Pre-job modeling
 - Lockup at 8,500 ft with default CoF of 0.36
 - 0.27 CoF (25% reduction) needed to reach MD
- Advanced lubricant was tested in laboratory for compatibility with acid
 - o Live and spent acids



Case History – Actual and Predicted Weights (1)

Case History – Actual and Predicted Weights (2)

Case History – Outcome

- ➢ In first run, CoF reduced by 44%
 - CoF reduced from 0.36 to 0.20 (0.18-0.22)
 - 1% advanced lubricant pumped continuously
 - Fluid hammer tool not utilized
- In subsequent runs, advanced lubricant pumping schedule was adjusted
 - Advanced lubricant used only between 6,340 and 11,030 ft (corresponding to the sand screen)
 - Saved operator from pumping 220 gallons of lubricant
 - Eliminated an estimated six hours of rig time

Conclusions

- Laboratory testing of advanced lubricant on silica-sand-covered surfaces (50 and 100% covered) for temperatures between 20 and 98°C
 - Mimics sand-filled wells or openholes
 - Default average CoF of 0.36 (no lubricant)
 - Average CoFs reduced to 0.15 (58% CoF reduction)
 - Temperature effect on CoF is much smaller when sand is present
- Field operation in a sand-screen-completed well
 - CoF reduced from 0.36 to 0.20 (44% CoF reduction)
 - Unified technology (lubricant and fluid hammer tool) reaching target depth
- > Openhole operations to be performed in future

Acknowledgements

CTRE/Baker Hughes Staff

Thank You / Questions

Backup – CT Rotational Friction Testing

- Industry standard: rotational lubricity testers
- Testing at room temperature and atmospheric pressure
- Not adjustable contact surface roughness
- High contact pressure and rotational speed
 - \circ $\,$ Mimics drill collar forces $\,$
- Does not take into account CT downhole conditions
 - CT linear sliding and light contact pressure
 - CT/well tubular surface roughness

Backup – CT Specific Linear Friction Testing

- Directly calculates mechanical friction with ability to vary:
 - o Temperature
 - Surface roughness
 - CT/casing samples
 - o Fluid mixture
 - Constant pressure*
 - Constant speed*

