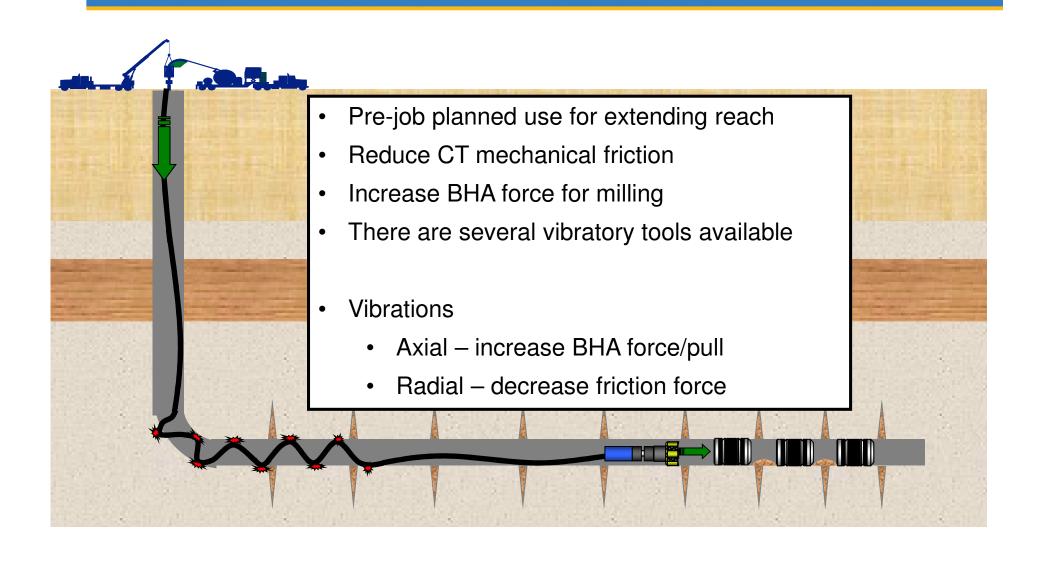
New Insights On How Vibration Modeling Improves Reach

Silviu Livescu, Coiled Tubing Research and Engineering (CTRE)

October 21, 2015 ICoTA Roundtable, Calgary, Canada

Why Are Vibrations Used in Extended-Reach Wells?



SPE Papers on CT Vibrations

- OnePetro papers
 - 2299 papers found with "water hammer"
 - 298 papers found with "coiled tubing vibrations"
 - Fewer than 10 papers on modeling CT vibrations
- Outside of oil and gas industry
 - Significant interest in modeling pipe flow vibrations
 - A.S. Tijsseling, Eindhoven University of Technology, The Netherlands, 1993 – present
 - Fluid-structure interactions, water hammer effects
 - Several papers in Journal of Fluid Mechanics between 1980 2000
 - Helical pipe flow

CT Water Hammer Modeling

- SPE-168297: first published CT water hammer mathematical and numerical study
- Fluidic switch based on Coandă effect (1936)
 - Tendency of a fluid jet to adhere to a curved surface
- Main assumptions for "classic" water hammer theory
 - CT fluid flow is one-dimensional
 - No cavitation (local pressure greater than liquid vapor pressure)
 - Wave speed is constant
 - CT wall and fluid have similar elastic behavior
 - CT-induced pressure transients are small compared to the fluid pressure wave
 - CT is a straight pipe

CT Water Hammer Modeling for Straight Pipes

- Solve continuity equation and the equation of motion
- Method of Characteristics

$$\rho c^2 \frac{\partial u}{\partial z} + \frac{\partial p}{\partial t} = 0$$

$$\frac{\partial u}{\partial t} + \frac{1}{\rho} \frac{\partial p}{\partial z} + \frac{f}{2d_{in}} u |u| = 0$$

u =axial fluid velocity, m/s²

p = fluid pressure, psi

t = time, s

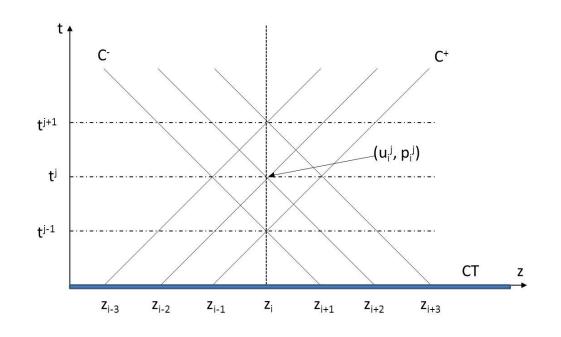
z =axial coordinate along CT length, m

 ρ = fluid density, kg/m³

c = acoustic wave speed through fluid, m/s

f = frictional pressure drop factor, -

 d_{in} = CT internal diameter, in



Weak Helical Pipe Flow Modeling

Analytical solutions for helical pipe flow using the Perturbation Method

$$\kappa d_{CT} = \frac{(D/2)d_{CT}}{b^2 + (D/2)^2} = \varepsilon \ll 1$$

 $\tau d_{CT} = \frac{bd_{CT}}{b^2 + (D/2)^2} = \varepsilon \lambda \ll 1$

$$u(t,z) = u_0(t,z) + \varepsilon u_1(t,z) + \mathcal{O}(\varepsilon^2)$$

$$p(t,z) = p_0(t,z) + \varepsilon p_1(t,z) + \mathcal{O}(\varepsilon^2)$$

$$\kappa$$
 = pipe curvature, -

 τ = pipe torsion, -

D = wellbore/casing internal diameter, in

b = CT pitch, ft

 d_{CT} = CT diameter, in

$$d_{CT}$$
 = 2-in.
 D = 5.5-in.
 b = 60 ft
$$\varepsilon \lambda = 2 \cdot 10^{-6} \ll 1$$

• The Perturbation Method can be used for CT pitches as small as 20-in.!

$$max(\varepsilon, \varepsilon\lambda) \cong 0.1 \ll 1$$
 $b \cong 20$ -in.

• Helical pipe flow is **weak** if $d_{CT} \ll b$

CT Water Hammer and Radial Vibrations Modeling

Leading order, ε^0 (straight pipe)

$$\rho c^2 \frac{\partial u_0}{\partial z} + \frac{\partial p_0}{\partial t} = 0$$

$$\frac{\partial u_0}{\partial t} + \frac{1}{\rho} \frac{\partial p_0}{\partial z} + \frac{f}{2d_{in}} u_0 |u_0| = 0$$

First order, ε^1 (weak helical pipe)

$$\rho c^2 \frac{\partial u_1}{\partial z} + \frac{\partial p_1}{\partial t} = 0$$

$$\frac{\partial u_1}{\partial t} + \frac{1}{\rho} \frac{\partial p_1}{\partial z} + \frac{f}{2d_{in}} (u_0|u_1| + u_1|u_0|) = 0$$

Radial displacement and acceleration and normal force per unit mass

$$u_r = \frac{d_{in}^2}{4wE}p$$

$$a_r = \frac{d_{in}^2}{4wE} \frac{\partial^2 p}{\partial t^2}$$

$$n = g - a_r$$

w = CT wall thickness, in.

E = CT Young modulus, Pa

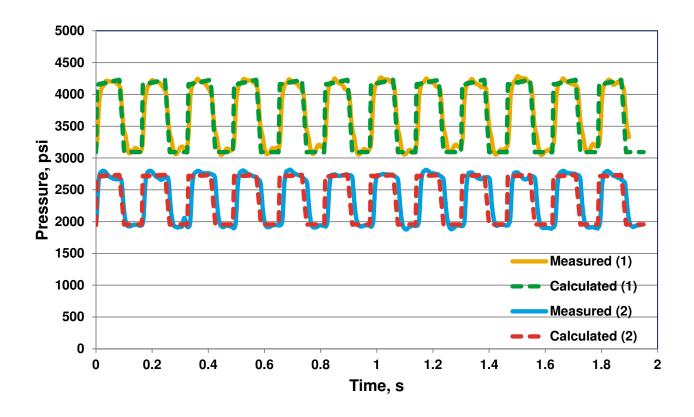
 u_r = radial displacement, m

 a_r = radial acceleration, m/s²

n = CT normal force per unit mass, m/s²

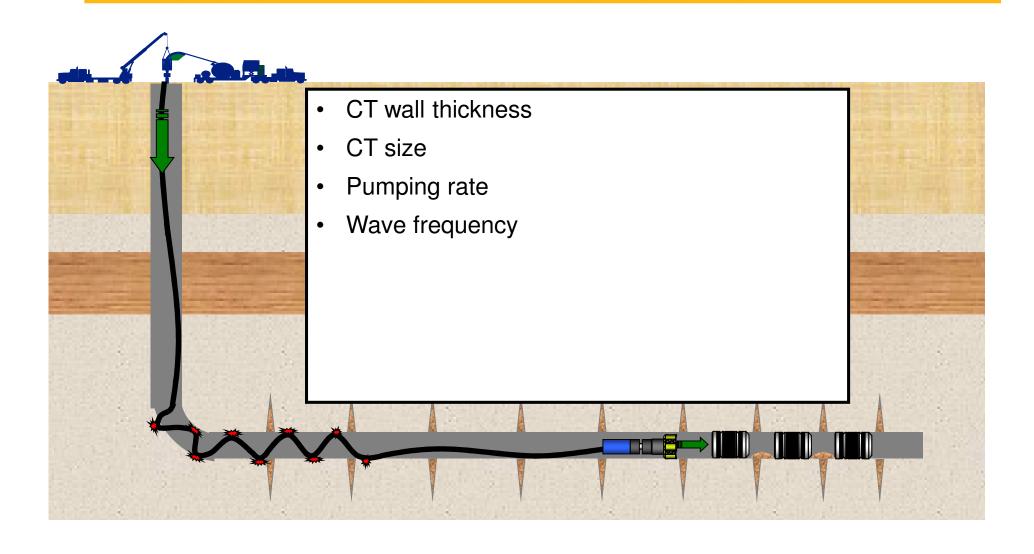
 $g = \text{gravitational acceleration}, \text{m/s}^2$

Water Hammer Model Validation Against Lab Data

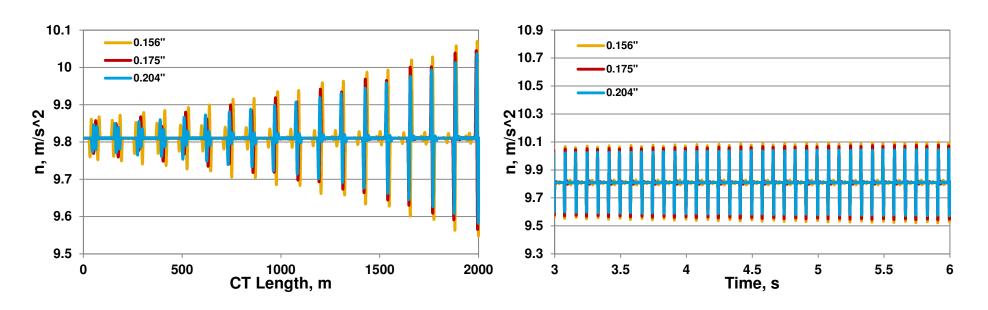


Case 1: Pumping Rate = 3 bpm, Back Pressure = 2,100 psi Case 2: Pumping Rate = 1.5 bpm, Back Pressure = 1,720 psi

Four Parameter Effects on Radial Vibrations



CT Wall Thickness Effect on Radial Acceleration



$$d_{CT}$$
 = 2-in.

$$Q_{inj} = 2.5 \text{ bpm}$$

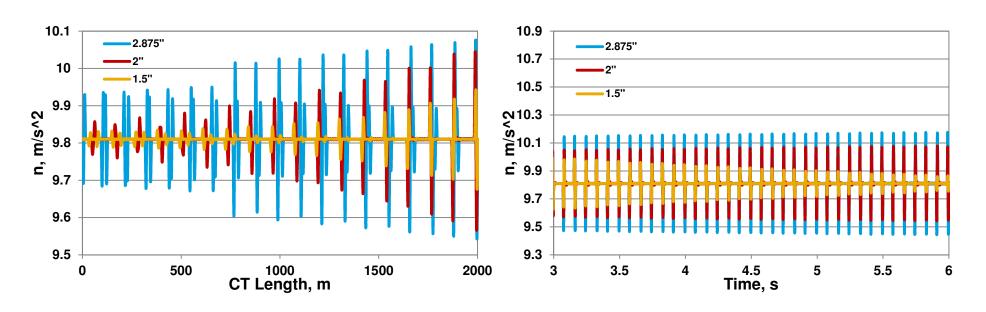
$$D = 5.5$$
-in.

$$\vartheta = 6 \text{ Hz}$$

$$P_{BH} = 3630 \text{ psi}$$

CT wall thickness, in.	Total normal force per unit mass, m/s ²	Change, %
0.156	10.094	0.5
0.175	10.073	0.3
0.204	10.044	-

CT Size Effect on Radial Acceleration



$$Q_{inj}$$
 = 2.5 bpm

$$w = 0.175$$
-in.

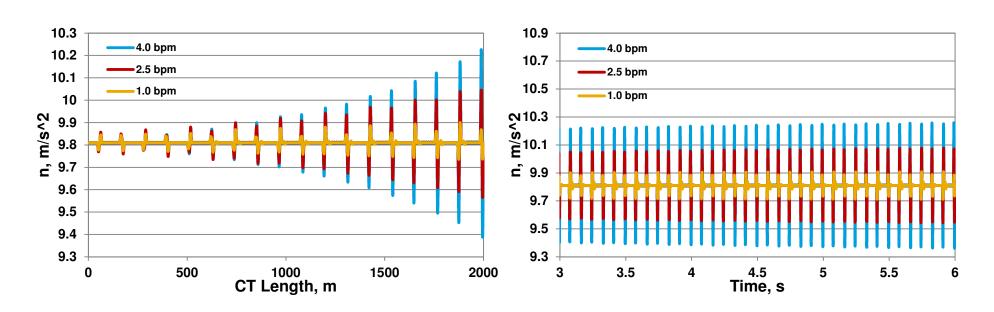
$$D = 5.5$$
-in.

$$\vartheta = 6 \text{ Hz}$$

$$P_{BH} = 3630 \text{ psi}$$

CT size, in.	Total normal force per unit mass, m/s ²	Change, %
1.5	10.058	-
2	10.074	0.2
2.875	10.228	1.7

Pumping Rate Effect on Radial Acceleration



$$d_{CT} = 2$$
-in.

$$w = 0.175$$
-in.

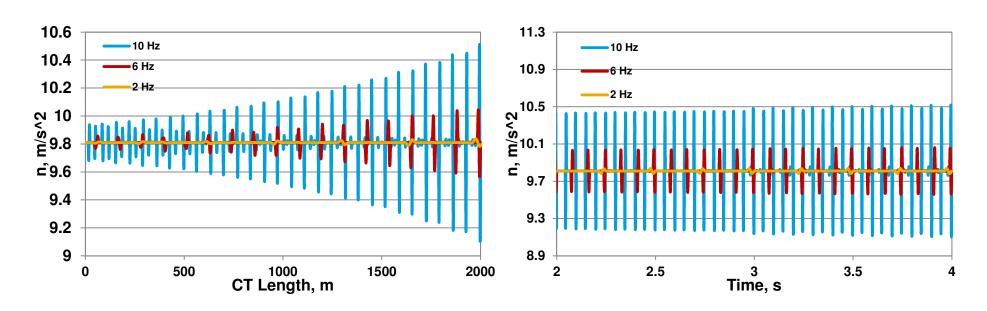
$$D = 5.5$$
-in.

$$\vartheta = 6 \text{ Hz}$$

$$P_{BH} = 3630 \text{ psi}$$

Pumping rate, bpm	Total normal force per unit mass, m/s ²	Change, %
1.0	9.907	-
2.5	10.073	1.7
4.0	10.252	3.5

Wave Frequency Effect on Radial Acceleration



$$d_{CT} = 2-in.$$

$$Q_{inj} = 2.5 \text{ bpm}$$

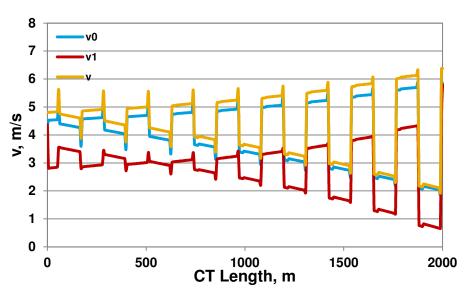
$$D = 5.5$$
-in.

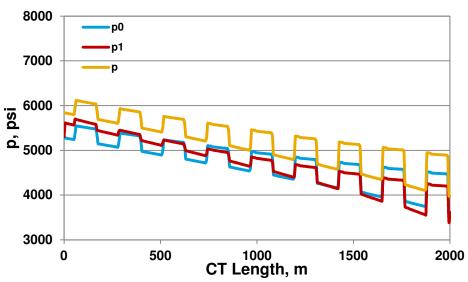
$$w = 0.175 - in.$$

$$P_{BH} = 3630 \text{ psi}$$

Wave frequency, Hz	Total normal force per unit mass, m/s ²	Change, %
2	9.843	-
6	10.073	2.3
10	10.529	7.0

Weak Helical Pipe Flow Effect on Water Hammer





Main parameters

$$d_{CT} = 2$$
-in.

$$w = 0.175$$
-in.

$$D = 5.5$$
-in.

$$\vartheta = 6 \text{ Hz}$$

$$P_{BH} = 3630 \text{ psi}$$

$$Q_{inj} = 2.5 \text{ bpm}$$

Take-away

- $v(t,z) \cong v_0(t,z) + \mathcal{O}(\varepsilon)$
- $p(t,z) \cong p_0(t,z) + \mathcal{O}(\varepsilon)$
- Weak helical pipe flow effect is small and can be ignored (i.e., CT can be considered as a straight pipe)

Conclusions

- Developed first CT water hammer model for straight and weak helical pipes
 - Method of Characteristics
 - Perturbation Method
- Validated model against lab data
- Studied the effects of four parameters on radial acceleration in horizontal wells
 - CT wall thickness (smallest)
 - CT size (small)
 - Pumping rate (large)
 - Wave frequency (largest)
- For CT operations, weak helical CT vibrations can be modeled as for straight pipes

Acknowledgements

- John Misselbrook
- Bill Aitken
- Tom Watkins
- CTRE/Baker Hughes Staff

Thank You / Questions