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Why Are Vibrations Used in Extended-Reach Wells?
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• Pre-job planned use for extending reach

• Reduce CT mechanical friction

• Increase BHA force for milling

• There are several vibratory tools available

• Vibrations

• Axial – increase BHA force/pull

• Radial – decrease friction force



SPE Papers on CT Vibrations 
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• OnePetro papers 

• 2299 papers found with “water hammer”

• 298 papers found with “coiled tubing vibrations”

• Fewer than 10 papers on modeling CT vibrations

• Outside of oil and gas industry

• Significant interest in modeling pipe flow vibrations

• A.S. Tijsseling, Eindhoven University of Technology, The Netherlands, 

1993 – present

• Fluid-structure interactions, water hammer effects

• Several papers in Journal of Fluid Mechanics between 1980 – 2000

• Helical pipe flow



CT Water Hammer Modeling 
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• SPE-168297: first published CT water hammer mathematical and numerical 

study

• Fluidic switch based on Coandă effect (1936)

• Tendency of a fluid jet to adhere to a curved surface 

• Main assumptions for “classic” water hammer theory

• CT fluid flow is one-dimensional

• No cavitation (local pressure greater than liquid vapor pressure)

• Wave speed is constant

• CT wall and fluid have similar elastic behavior

• CT-induced pressure transients are small compared to the fluid 

pressure wave

• CT is a straight pipe



CT Water Hammer Modeling for Straight Pipes 
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• Solve continuity equation and the equation of motion

• Method of Characteristics
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� � = 0

� = axial fluid velocity, m/s2

� = fluid pressure, psi

	 = time, s

� = axial coordinate along CT length, m

� = fluid density, kg/m3

� = acoustic wave speed through fluid, m/s

 = frictional pressure drop factor, -

��� = CT internal diameter, in



Weak Helical Pipe Flow Modeling
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• Analytical solutions for helical pipe flow using the Perturbation Method

� = pipe curvature, -

� = pipe torsion, -

� = wellbore/casing internal diameter, in

� = CT pitch, ft

��� = CT diameter, in

���� =
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= � ≪ 1
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�� + � 2⁄ �
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� 	, � = �� 	, � + ��� 	, � + �(��)

� 	, � = �� 	, � + ��� 	, � + �(��)

��� = 2-in.

� = 5.5-in. 

� = 60 ft

� = 8 ∙ 10$% ≪ 1

�� = 2 ∙ 10$& ≪ 1

'() �, �� ≅ 0.1 ≪ 1 � ≅ 20-in.

• The Perturbation Method can be used for CT pitches as small as 20-in.!

• Helical pipe flow is weak if ��� ≪ �



CT Water Hammer and Radial Vibrations Modeling
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Leading order, �� (straight pipe)
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First order, �� (weak helical pipe)

���
���

��
+

���

�	
= 0

���

�	
+

1

�

���

��
+



2���

�� �� + �� �� = 0

Radial displacement and 

acceleration and normal force 

per unit mass
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1 = CT wall thickness, in.

2 = CT Young modulus, Pa

�/ = radial displacement, m

(/ = radial acceleration, m/s2

3 = CT normal force per unit mass, m/s2

4 = gravitational acceleration, m/s2

3 = 4 − (/



Water Hammer Model Validation Against Lab Data
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Four Parameter Effects on Radial Vibrations
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• CT wall thickness

• CT size

• Pumping rate

• Wave frequency



CT Wall Thickness Effect on Radial Acceleration
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Main parameters
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CT Size Effect on Radial Acceleration
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Main parameters
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Pumping Rate Effect on Radial Acceleration
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Wave Frequency Effect on Radial Acceleration
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Main parameters
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Weak Helical Pipe Flow Effect on Water Hammer
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Main parameters
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Take-away

• < 	, � ≅ <� 	, � + �(�)

• � 	, � ≅ �� 	, � + �(�)

• Weak helical pipe flow effect is small and can 
be ignored (i.e., CT can be considered as a 
straight pipe)
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Conclusions
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• Developed first CT water hammer model for straight and weak helical pipes

• Method of Characteristics

• Perturbation Method

• Validated model against lab data

• Studied the effects of four parameters on radial acceleration in horizontal 

wells

• CT wall thickness (smallest)

• CT size (small)

• Pumping rate (large)

• Wave frequency (largest)

• For CT operations, weak helical CT vibrations can be modeled as for straight 

pipes



| 2015 ICoTA Roundtable – New Insights On How Vibration Modeling Improves Reach – Silviu Livescu16

Acknowledgements

• John Misselbrook

• Bill Aitken

• Tom Watkins

• CTRE/Baker Hughes Staff

Thank You / Questions


