CALIBRATION OF A NEW TRANSIENT CT MODEL USING DOWNHOLE LOG DATA

ICoTA Round Table

By Standen Scientific for NCS Multistage 21st October 2015

WHY A MODEL?

- Better understanding of BHA motion
 - Aid in tool operation
 - Locating and operating procedures
 - Interpretation of surface weight observations
 - Aid in tool development.

Model Parameters

FLUID DAMPING ALGORITHM

- Uses impulsive shear flow model
 - "Introduction to Fluid Mechanics", JL Fay, ch 6.
 - Each CT node has a subsidiary set of fluid nodes to solve the time-dependent fluid shear field.

FRICTION MODEL

- Coulomb model
 - Coefficients for static and dynamic friction.
 - Stick/Slip is solved by including the available momentum change (per timestep) in the force balance on each node.
- Helical buckling
 - Non-linear contact force & friction are included.

SPRING CONSTANTS & BUCKLING

- Hooke's law if in tension.
- Helically buckled if in compression.
 - Assumes residual curvature of CT overrules sinusoidal transition.

BHA & SLEEVE

BHA FOR FIELD CALIBRATION

WELLS

Job 013 4" id 25 sleeves CT string 2 3/8 0.156

AVAILABLE DATA

• Surface

- Weight, speed, pressures, rates.
- 1 second intervals.
- BHA
 - Pressure, temperature, force, acceleration at 1 second intervals.
 - Acceleration burst mode when triggered by 1 g; 350Hz for 1.6 seconds.

CALIBRATION FOCUS

Locate at 5 m/min

Pull-thru at 5 – 12 m/min

"Locate" means pull thru to find the recess

then run back in to set.

Recess is 46mm Longer than keys

CALIBRATION POINTS – PULL FORCE

Model Locate J013 - 2066m. BHA pull force kN -5 39 -10 -15 -20

CALIBRATION POINTS – SURFACE WEIGHT

COMPARISON 1

COMPARISON 2

CALIBRATION POINTS – ACCELERATION

COMPARISON 3

Comparison Acceleration J001-1456m

COMPARISON 3

POSITION FROM ACCELEROMETERS

- Double-integrate the according
 - Very prone to errors.

TECHNICAL SPECIFICATIONS

Performance:

Free inertial drift

Standard T16 IMU Under 5 nautical miles

01/14-R3

High Performance T24 IMU Under 1 nautical miles per hour

MINIPOSNAV3

RING LASER GYRO

- We know the times when the BHA is stationary so can zero-out the bias error.
- This was the only error-reduction treatment given to the data.

POSITION FROM ACCELEROMETERS

- Slope of 2 degrees off horizontal gives an output of 0.035 g from the accelerometer...
- Integrates to 0.17m in 1 second.

COMPARISON 4A

COMPARISON 4B

Result: close match between initial distance traveled on locator release; also rebound of BHA back downhole, followed by stationary period and moving again at 1.4 sec.

COMPARISON 4C

Result: close match of initial distance travelled and distance travelled after resuming motion at 2 sec.

HYPOTHETICAL

- 1000m, 2" string being run horizontally in 4" pipeline
- No BHA. Friction coeffs are 0.25 & 0.25 x 1.3

RIH 0.1 M/MIN

Spikes to 25 times the injector speed. Stuck 81% of the time. No discernible pattern. Deterministically chaotic.

RIH 0.2 M/MIN

Spikes are about the same height even though the injector speed has doubled. Stuck 64% of the time. No discernible pattern.

RIH 0.4 M/MIN

Spikes still about the same height even though the injector speed has again doubled. Stuck 43% of the overall 120 secs time. Indications of periodic motion.

RIH 0.8 M/MIN

Stuck 18% of the overall 120 secs time. Stronger periodic motion.

RIH 1.6 M/MIN

No longer sticking. Noisy periodic motion. Peak to peak range is at least equal to RIH rate.

RIH 1.6 M/MIN

Normal speeds. Periodic motion continues – just like bowing a violin.

FFT – SPECTRAL ANALYSIS

≈ THE END ≈

	LIVESIM	×
tring, BHA CT Actions Forces Calcul	ation Control	
Inits	·	Save As
C Metric	Imperial	
		Confirm CT
Calculation		
Resolution		Launch
(• <u>Coarse</u>) (• Medium	SDFR	
C Fine C Extra fine	1.3	Show Output
C User number		
Output		
C Run for a time	Run to, sec 0.0004	
Run to a depth	Run to, ft 2350	
Graph interval, steps 500	Output Write Schedule	WIDENSTAGE
Surface weight	ce speed 🔽 Surface displacement	
🔽 BHA force 🔽 BHA a	cceleration 🔽 BHA speed	
▼ BHA displacement ▼ String	twist 🔽 BHA torque	License Agreement
BHA added friction VOB	Felically buckled nodes	
CT pump rate Ann. p	oump rate 🔽 Depth	